Skip to main content

数据库分表的意义与数据库中单表的大小控制

转载来自:http://www.woqutech.com/?p=807

请问:MySQL库中单表的大小尽可能控制在多大?采取这种表大小限制的策略的原因是什么?一个MySQL服务器实例中,表的数量有限制吗?单个MySQL服务器实例中,表的大小的总和有限制吗?如果有,考虑的原因是什么?单台PC SERVER上建多个MySQL服务器实例,一般的实例数是多少?是基于什么样的考虑原因?
MySQL数据库分库后,我们的建议单表大小控制在10G以下。限制分拆以后的表的大小有几个好处:
1、表比较小的话,DDL操作更快。由于MySQL部分DDL操作需要锁表,所以表越小,锁表的时间就越短。
2、表越小,数据查询访问的速度越快。MySQL是B树结构,表越小,树的分层越少,IO也会比较少。
3、表越小,最终扩容到MySQL的实例数越多。将数据拆分得越散,数据分布越均匀,扩容的话,能够用更多的服务器来承担并发压力。
建议MySQL服务器的配置:2路6核cpu、192G内存,配有8块SSD或者PCIe Flash卡。这样一台服务器上一般是部署4-8个数据库实例,
这个要根据数据库硬件最大可承载的的CPU,IO(包括IO性能和IO容量),网络容量来评估。
比如双十一的时候,8个实例的flash卡MySQL数据库物理主机,就已经把网络的千兆网卡打满了。
所以需要进行充分的测试,检查在充分的压力下,数据库的能力会先遇到什么瓶颈。表的大小总和并没有限制,如果你是一个正常情况下访问量非常少的表,它的限制就可能在于单机MySQL磁盘或者flash卡的容量大小了。

Comments

Popular posts from this blog

Elasticsearch error when the field exceed limit 32kb

When we post data that the field exceed the limit, elasticsearch will reject the data which error: {"error":{"root_cause":[{"type":"remote_transport_exception","reason":"[cs19-2][10.200.20.39:9301][indices:data/write/index]"}],"type":"illegal_argument_exception","reason":"Document contains at least one immense term in field=\"field1\" (whose UTF8 encoding is longer than the max length 32766), all of which were skipped.  Please correct the analyzer to not produce such terms.  The prefix of the first immense term is You can handle this: 1. you can udpate the mapping part at any time PUT INDEXNAME/_mapping/TYPENAME { "properties" : { "logInfo" : { "type" : "string" , "analyzer" : "keyword" , "ignore_above" : 32766 } } } ignore_above means that we will only keep 32766 bytes 2...

学习服务器配置之路~~

第一个常见的小问题:MySQL安装 os : fedora 20 mysql: mysql-server(5.5) 所有假设你的系统是没有经过特殊配置的。 1: yum install mysql-server 2: mysql 报错:socket连接不上 3: service mysqld start   注意这步是 mysqld 不是mysql 这样就解决。网上的方法好像有点麻烦。 第二个小问题:解压一些文件(.tar.gz)时报错 http://itsfoss.com/how-solve-stdin-gzip-format/ 上面介绍的很清楚,总之要先确认你下载的文件类型。 第三个小问题。配置tomcat服务器 主要问题是比如我的域名是 cqupt.me 而你tomcat服务器的项目在/webapps/{your projectname} 这时你很蛋疼的要 cqupt.me:8080/{your projectname}/index.html。 如果要cqupt.me就可以完成。这样配置: 都是在tomcat下/conf/server.xml 第一步端口。简单 不废话 第二部。 <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true" xmlValidation="false" xmlNamespaceAware="false"> </Host> 在标签中间插入: <Context path=""  docBase="xbwl"  debug="0" reloadable="true"/> docBase="xbwl" xbwl 即为指定的项目。即({your projectname}_ 完整如下: <Host name="localhost" appBase="webapps" ...

并发读写外部依赖

在我们以task为粒度的分布式系统中,需要对数据做checkpoint,以保证task在重启的时候内存中未被消费完的数据可以保存到文件系统中以防止丢失。 在第一个版本中,我们的task默认使用了task的名字作为任务的ID,同时在做checkpoint时使用diskQueue也是使用相同的方式来生成。直到我们碰到一个需要更新task配置的需求后产生了问题。 为了解决任务更新的问题,我们task的做了使用时间戳作为版本管理,简单就是说:在更新一个任务的配置后,version会替换,这时候会生成一个新的task(旧的任务在消费完数据后会被cleanTask的任务给删除掉)来继续。 在过渡期的时候,即新旧task同时在运行的时候,我们做了重启操作,此时两个任务同时执行了checkpoint操作。而bug的原因是在于,task的ID和diskQueue的ID是不相同的!也就是说两个任务虽然new出两个diskQ,但是两个diskQ会同时向一个文件中写数据,这就导致了文件的损坏。 这里的反思是:对于一个Task任务,如果需要和外部的文件或者其他资源交互时,一定需要保证外部的依赖对于每一个task任务都是唯一的。这里以fileSystem为例子,一个task保证对应的是一个file or dir。两种方式:1.使用一个xxx.lock的方式,一个系统如果已经决定对该资源做write/read操作时,就建立一个lock。该系统内部的进程想要同时做操作时可以避免因为上述简单的ID BUG而造成的问题。同时其他系统可以辨识到该文件可能被其他应用程序使用中,他可以针对这种情况做一些预期内的操作。 Golang中突然想起一种方案,对于需要写文件或者其他资源访问时,使用一个 channel 来做串行处理。比如当多个不可预知的任务可能同时做一个写入文件操作时,任务可以将此次操作的metadata以一种特定的数据格式交给上层系统(我们定义的channel)来统一处理,因为channel的并发写入是绝对安全的。当然如果是需要对多个文件做写入操作时,我们可以使用这样一种方式: 一个channel对应下游有多个channel(而不是file对象),每个channel都定义一个唯一ID,作为suffix。每个channel写完的文件都有ID,比如A,B,C三个channel现在...